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Abstract. The high numerical accuracy of the recently developed (Chepulskii R V 1999
J. Phys.: Condens. Matter118645–60) generalized ring approximation for analytical description
of the short-range order (SRO) in disordered alloys with many-body atomic interactions of
arbitrary orders is revealed through comparison with the corresponding data of the Monte Carlo
simulation. It is shown that this accuracy rises with an increase of the characteristic radius of atomic
interactions. By the example of both the simplest model systems and Ni–V alloy, we demonstrate
that, within the generalized ring approximation, it is possible to describe the phenomenon of the
temperature dependence of a position in reciprocal space of the SRO Fourier transform’s maximum
at temperature independent atomic interactions. The analytical description of the effect of nonpair
atomic interactions on the Fourier transform of the SRO parameters is performed in case of Ni–V
alloy.

1. Introduction

In [1, 2], the following analytical approximations for calculation of the Fourier transformαk
of the short-range order (SRO) Warren–Cowley parameters [3, 4] were obtained for the case
of a two-component disordered (i.e. without a long-range order) alloy with many-body atomic
interactions of arbitrary orders and radii of action, whoseN sites form a Bravais crystal lattice:

(1) within the generalized spherical model approximation

αk =
[
1 +

c(1− c)
kBT

(µ + Ṽ eff
k )

]−1

(1.1)

where

Ṽ eff
k =

N−2∑
m=0

cm

m!
Ṽ
(2+m)
k,0,0,...,0 = Ṽ (2)k + cṼ (3)k,0 +

c2

2
Ṽ
(4)
k,0,0 + · · · (1.2)

c is the concentration,kB is the Boltzmann constant,T is the absolute temperature,
Ṽ
(t)
k1,k2,...,kt−1

is the Fourier transform of the mixing potential oft th order (t = 1, 2, . . . , N);
(2) within the generalized ring approximation

αk =
[
1 +

c(1− c)
kBT

(µ + Ṽ eff
k + Ṽ ring

k )

]−1

(1.3)
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where

Ṽ
ring
k = 1

N

∑
q

{
c(1− c)φ(4)q,k−k/2 + (1− 2c)φ(3)q,k−q − φ(2)q

1 +φ(2)q c(1− c)/(kBT )

− [c(1− c)φ(3)q,k−q]2 + 2c(1− c)(1− 2c)φ(2)q φ
(3)
q,k−q + (1− 2c)2φ(2)q φ

(2)
k−q

2kBT [1 + φ(2)q c(1− c)/(kBT )][1 + φ(2)k−qc(1− c)/(kBT )]

}
(1.4)

and, taking account of only pair, triplet and quadruplet atomic interactions,

φ
(2)
k = µ + Ṽ eff

k = µ + V (2)k + cV (3)k,0 + c2/2V (4)k,0,0 (1.5)

φ
(3)
k1,k2
= V (3)k1,k2

+ cV (4)k1,k2,0
(1.6)

φ
(4)
k1,k2,k3

= V (4)k1,k2,k3
. (1.7)

µ is the quantity to be found from the equation of the following form common for both
approximations (1.1) and (1.3)

N−1
∑
q

αq = 1 (1.8)

on substitution of the functionαk corresponding to each approximation. The summations
in (1.4) and (1.8) over the wave vectorsq are carried over all points in the first Brillouin
zone specified by the cyclic boundary conditions.

In [1], the high numerical accuracy of results of the generalized spherical model
approximation in wide temperature and concentration intervals was revealed. However, from
the corresponding expression (1.1), it is evident that, within this approximation, the position
of the maximum of the functionαk in reciprocal space coincides with the position of the
minimum of the functionṼ eff

k at arbitrary values of concentration and temperature. Taking into
account (1.2), one may conclude that, within the generalized spherical model approximation,
it is impossible to describe the phenomenon of the temperature dependence of a position in
reciprocal space of the SRO Fourier transform’s maximum at temperature independent atomic
interactions, which takes place in a number of alloys (see, e.g. [5–15]).

At the same time, from the corresponding expressions (1.3) and (1.4), it follows that, within
the generalized ring approximation, the description of the denoted phenomenon is possible in
principle. The aim of the present paper is a comparative study of the numerical accuracies of
the generalized spherical model and ring approximations in the case of both the simplest model
systems (section 2) and actual alloys for which the necessary information concerning atomic
interactions is available (section 3). Our main interest concerns the qualitative adequacy
of a description of the SRO Fourier transform within the generalized ring approximation,
in particular, the possibility of realization of the above mentioned phenomenon within this
approximation.

2. Case of model alloys

Firstly, we considered the same model alloys as in [1]. In all these alloys with the f.c.c. crystal
lattice only the pair and triplet atomic interactions for the first one or two coordination shells
are taking into account. In figure 1, the SRO data for the first coordination shell obtained
by the Monte Carlo simulation [1] as well as within the generalized spherical model (1.1)
and ring (1.3) approximations are shown in three cases all corresponding toc = 0.75. The
choice of such concentration for presentation in figure 1 is not principal and corresponds to
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Figure 1. The dependencies of the SRO parameter for the first coordination shell of the f.c.c. crystal
lattice on the reduced temperature that were calculated through the Monte Carlo simulation (MC)
as well as within the generalized spherical model (1.1) (SM) and ring (1.3) (RING) approximations
at c = 0.75, V (2)1 > 0 and (a)V (2)2 = 0, V (3)1 = 0; (b) V (2)2 = 0, V (3)1 = 0.5V (2)1 ; (c)

V
(2)
2 = −0.5V (2)1 , V (3)1 = 0.5V (2)1 , whereV (n)s is the value of the mixing potential ofnth order

for the sth coordination shell. The values of the mixing potentials of the other orders and/or
coordination shells than the above mentioned ones are identically equal to zero. The designation
‘CE’ corresponds to the use of the canonical ensemble instead of the grand canonical one.

the largest effect of nonpair atomic interactions on the SRO in this case [1]. The point of the
order–disorder phase transition in figure 1 corresponds to the abrupt change of the temperature
dependence of the SRO parameter obtained by the Monte Carlo simulation. Note that the
values of the SRO parameter were not found within the generalized ring approximation below
the values 2 and 2.5 of reduced temperature in the cases corresponding to figures 1(b) and 1(c),
respectively, because the solving of the equation (1.8) at such temperatures requires significant
computational efforts.
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Figure 2. The dependencies (a) of the SRO Fourier transformαk calculated within the same
approximations as in figure 1 atc = 0.75, V (2)1 > 0, V (2)2 = 0, V (3)1 = 0.5V (2)1 and (b) of

the reduced functioñV eff
k at c = 0.75, V (2)1 > 0, V (2)2 = 0 and bothV (3)1 = 0 (Pairwise) and

V
(3)
1 = 0.5V (2)1 (Total) with respect to the wave vector along the high-symmetry lines [18] in the

corresponding first Brillouin zone. The designation ‘4sh’ means that the corresponding Fourier
transform was calculated through the data on the SRO parameters for the first four coordination
shells only. The designation ‘CE’ corresponds to the use of the canonical ensemble instead of the
grand canonical one. The reduced temperaturet = kBT/V

(2)
1 .

Accepting the results of the Monte Carlo simulation as a standard, on the basis of the
data presented in figure 1, one may conclude the following. The numerical accuracies of both
the generalized spherical model and ring approximations decreases when the triplet atomic
interactions are taken into account (compare figures 1(a) and 1(b)). By contrast, the numerical
accuracies of both these approximations have the opposite tendency if one considers them
within the canonical ensemble instead of the grand canonical one (i.e. settingµ equal to zero
rather than to the solution of the equation (1.8) [2, 16, 17]). The numerical accuracies of all
considered analytical approximations rise when the pair atomic interactions on the second
coordination shell are taken into account (compare figures 1(b) and 1(c)).

In figure 2, we present the dependencies of the SRO Fourier transformαk calculated within
the same approximations as in figure 1 with respect to the wave vector along the high-symmetry
lines [18] in the corresponding first Brillouin zone in the case corresponding to figure 1(b).
The same dependencies of the reduced functionṼ eff

k in two cases corresponding to figures 1(a)
and 1(b) (i.e. taking and not taking into account the triplet atomic interactions, respectively) are
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also shown in figure 2. Besides, in this figure, we include the Fourier transformαk obtained,
taking into account the SRO parameters only for the first four coordination shells calculated
within the generalized ring approximation, with the aim of a correct comparison with the
Monte Carlo simulation data obtained in exactly the same manner.

It should be noted that, within the mean-field approximation, as follows from the
corresponding expression for the critical temperatureTc of the order–disorder phase transition
in alloy with only pair atomic interactions:

kBTc = −c(1− c)min
k
Ṽ
(2)
k = −c(1− c)Ṽ (2)k0

(2.1)

one should investigate the minima of the Fourier transformṼ
(2)
k of the pair mixing potential, if

one wants to find the instability wave vectork0 [19, 20]. Because the positions of the maxima
of the Fourier transformαk of the SRO parameters correspond to the instability wave vectors
when the temperature approaches its critical value, the above conclusion may be achieved from
the following mean-field-like Krivoglaz–Clapp–Moss formula [21–26]

αk = A
[
1 +

c(1− c)
kBT

Ṽ
(2)
k

]−1

(2.2)

(A is a normalization factor), within which the positions of the maxima ofαk coincide with the
positions of the minima of̃V (2)k in the reciprocal space at arbitrary values of the concentration
and temperature.

In the case of the presence of nonpair atomic interactions in an alloy, the expressions

kBTc = −c(1− c)min
k
Ṽ eff
k = −c(1− c)Ṽ eff

k0
(2.3)

[1] and (1.1) are the analogies of (2.1) and (2.2), respectively. Therefore, in this case, the
function Ṽ eff

k plays the role ofṼ (2)k , and the minima ofṼ eff
k rather than ofṼ (2)k should

be investigated, if one wants to find the instability wave vectors within the mean-field
approximation. Thus, in the corresponding figures of the present paper, we show not only
the SRO Fourier transformαk but also the functionṼ eff

k in all considered cases. Note that
the information concerning the topology of the functionṼ eff

k is also useful for prediction of a
high temperature behaviour of the SRO Fourier transform, because, at high temperatures, the
generalized spherical model approximation (1.1) demonstrates the high numerical accuracy of
results (see figure 1 and [1]).

We shall call two wave vectorsk1 andk2 energetically and/or statistically (within one
or another approximation) equivalent if̃V eff

k1
= Ṽ eff

k2
and/orαk1 = αk2, respectively. So,

from the forms of the functioñV eff
k shown in figure 2(b), it follows that all points belonging

to the Z(0, 1, h) high-symmetry line in reciprocal space are energetically equivalent in both
presented cases. (Here and below, we present the Cartesian coordinates of points in reciprocal
space in units of 2π/a, wherea is the lattice parameter). Accordingly, as directly follows
from (1.1), those points are also equivalent statistically within the generalized spherical
model approximation (see, also, figure 2(a)). In contrast, within both the generalized ring
approximation and Monte Carlo simulation the absolute maximum of the Fourier transform
αk corresponds exclusively to the X(1, 0, 0) point.

Note that the account of only the first four coordination shells of the SRO parameters in
calculation of the Fourier transformαk results in an artificial maximum of this Fourier transform
at the point0(0, 0, 0) (compare curves RING, RING (4sh) and MC (4sh) in figure 2(a)).
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3. Case of Ni–V alloy

Secondly, we considered the case of Ni–V alloy. The parameters of atomic interactions for
this alloy were calculated by the Connolly–Williams method in [27] and are presented in
table 1. By use of these parameters, the behaviour of the Fourier transformαk of the SRO
parameters was investigated in Ni3V (c = 0.25) and NiV (c = 0.50) disordered alloys within
the generalized spherical model (1.1) and ring (1.3) approximations. The obtained results are
presented in figures 3–5.

Table 1. The values of the mixing potentialsV andJ (see section 3 in [1]) in the case of Ni–V
alloy calculated by the Connolly–Williams method in [27].n is the order of the mixing potential,s
is the number of coordination shell corresponding (see section 4 in [1]) to the sites whose Cartesian
coordinates (in units ofa/2, wherea is the lattice parameter) are presented in the third column
‘Sites’. All energy quantities are in units of meV. The values ofJ

(n)
s in the ‘Pairwise’ column

correspond to a setting to zero of the values of both triplet and quadrupletJ mixing potentials.
Note that, in contrast to our presentation, the corresponding values ofJ

(n)
s presented in [27] are in

units of meV/atom and include the degeneracy factor.

J
(n)
s

n s Sites V
(n)
s J

(n)
s (pairwise)

2 1 (000), (110) 747.7 25.3 25.3
2 (000), (200) 154.3 −6.7 −6.7
3 (000), (211) 11.8 4.9 4.9
4 (000), (220) 76.5 5.6 5.6

3 1 (000), (110), (101) −374.3 −12.0 0
2 (000), (110), (200) −155.8 3.7 0
3 (000), (110), (211) 21.5 2.7 0
4 (000), (110), (220) −108.4 −13.6 0
5 (000), (110), (002) −13.7 −1.7 0

4 1 (000), (110), (101), (011) 0 0 0
2 (000), (110), (101), (200) 185.5 11.6 0

From figures 3–5, it follows that, in the case of Ni3V (c = 0.25) alloy, the account of
nonpair atomic interactions results in the energy (i.e. from the point of view of the function
Ṽ eff
k (1.2)) favourability of the W(1, 1

2, 0) point instead of the X(1, 0, 0) one. Accordingly, the
SRO Fourier transformαk calculated within all the approximations considered has the absolute
maximum at W(1, 1

2, 0) and X(1, 0, 0) points when taking and not taking into account the
nonpair atomic interactions, respectively. The obtained results are in agreement with those of
the Monte Carlo simulation [28, 29].

In the case of NiV (c = 0.50) alloy, the X(1, 0, 0) point is energy favourable, although
the functionṼ eff

k (1.2) has very close values at X(1, 0, 0) and W(1, 1
2, 0) points. Note that

in this case (as in any case ofc = 0.50), the account of nonpair atomic interactions in terms
of J mixing potentials has no effect on the functioñV eff

k (see equation (3.5) in [1]) and,
therefore, on the SRO Fourier transformαk calculated within the generalized spherical model
(1.1) approximation as well. So, the SRO Fourier transformαk calculated within the denoted
approximation has the absolute maximum at the X(1, 0, 0) point both taking and not taking
into account the nonpair atomic interactions.

Within the generalized ring approximation, if one is not taking into account the nonpair
atomic interactions in the case of NiV (c = 0.50) alloy, one obtains the absolute maximum of
the SRO Fourier transformαk at the X(1, 0, 0) point. However, when taking such interactions
into account, the denoted maximum moves to the nonhigh-symmetry point belonging to the
high-symmetry line6(h/

√
2, h/
√

2, 0). The last result obtained within the generalized ring
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Figure 3. The dependencies (a) of the SRO Fourier transformαk calculated within the generalized
spherical model (1.1) (SM) and ring (1.3) (RING) approximations and (b) of the functionṼ eff

k with
respect to the wave vector along the high-symmetry lines [18] in the corresponding first Brillouin
zone in the case of Ni3V (c = 0.25) alloy. The designation ‘CE’ corresponds to the use of the
canonical ensemble instead of the grand canonical one. The designations ‘Total’ and ‘Pairwise’
correspond to the use of the values of the mixing potentials shown in the fourth (or, equivalently,
fifth) and sixth columns of table 1, respectively. The absence of both designations ‘Total’ and
‘Pairwise’ corresponds to the ‘Total’ case.

approximation is in agreement with that of the Monte Carlo simulation [28] and in contradiction
to the above described result obtained within the generalized spherical model approximation.

In the case ofc = 0.25, the results obtained both within the generalized spherical model
and ring approximations as well as by the Monte Carlo simulation are in agreement with those
of the diffuse scattering experiments [30]. Unfortunately, a similar comparison in the case of
c = 0.50 cannot be performed, because the corresponding experimental data seem to have
not been published yet. Note that in [31] the experimental data on diffuse scattering intensity
were successfully interpreted in terms of onlypair atomic interactions by use of the inverse
Monte Carlo method. However, this fact cannot be a proof of the absence of nonpair atomic
interactions in the alloy, as demonstrated in [29]. This statement is also obvious from the
expressions (1.1) and (1.2), from which it follows that the behaviour of the Fourier transform
αk of the SRO parameters at high temperatures is determined by the effective pair potential
Ṽ eff
k even in the case of the presence of nonpair atomic interactions in the alloy.

It is the author’s opinion that the question of the presence of nonpair atomic interactions
in Ni–V alloy still remains open. One may assume that the first way of resolving this
question consists in the consideration of the superstructures with thesamefixed stoichiometric
composition within the Connolly–Williams [32, 33] method, because, in the opposite case,
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Figure 4. The same as in figure 3, but in the case of NiV (c = 0.50) alloy.

the obtained nonpair atomic interactions in the alloy may be no more than the reflection of
a concentrational dependence of pair interactions. Secondly, it is desirable to perform the
direct estimation of the contribution from the nonpair atomic interactions to the alloy energy
by use of the generalized perturbation method [34–37] as well as the mean-field concentration
functional theory [38–41] (see also section 8 in [2]). Besides, it would be helpful to elaborate
a direct method for extraction of the data on not only pair but also nonpair atomic correlations
and interactions in alloy through the data on the diffuse scattering intensity [42] and apply this
method in the cases of both Ni3V and NiV alloys.

4. Conclusions

On the basis of the results obtained in the present work, one may conclude that the description
of the SRO Fourier transform in alloys with many-body atomic interactions of arbitrary orders
is correct within the generalized ring approximation (1.3), whereas the application of the
generalized spherical model (1.1) approximation in some cases may lead to qualitative error. (It
seems likely that such cases are characterized by almost equal values of the functionṼ eff

k (1.2)
in a wide vicinity of the absolute minimum of this function). Namely, within the generalized
ring approximation (unlike the generalized spherical model one), it is possible to describe
the phenomenon of the temperature dependence of a position in reciprocal space of the SRO
Fourier transform’s maximum at temperature independent atomic interactions. Note that the
knowledge of the correct position of such maximum when the temperature approaches its
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Figure 5. The same as in figures 3(a) and 4(a), but for the dependencies of the SRO Fourier
transformαk with respect to the wave vector within the plane (h, k,0).

critical value is helpful for determination of the long-range order superstructure appearing
as a result of the order–disorder phase transition, because the position of this maximum
characterizes one such superstructure wave vector [19, 20].

In the present paper, it was also demonstrated that under the presence of nonpair atomic
interactions in alloy, the correct description may be performed also within the generalized ring
approximation elaborated within the canonical ensemble instead of the grand canonical one.

It should be noticed that, within the generalized spherical model and ring approximations,
the effective radius of atomic interactions in alloy is not limiteda priori (in contrast to the
widely used Monte Carlo and cluster-variation methods), because only the Fourier transforms
of the mixing potentials appear in the corresponding expressions (1.1)–(1.7). Moreover, it
was revealed (see section 2) that the numerical accuracies of these approximations become
higher with an increase of such effective radius. Thus, the generalized spherical model and
ring approximations may be recommended for a description of actual alloys with a long-range
character of atomic interactions caused, for example, by the strain-induced (elastic) effects.
Note that, within the high-accuracy Tokar–Masanskii–Grishchenko approximation [43, 44]
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based on application of theγ -expansion method [45], it is possible to take into account
the long-range contributions of thepair interatomic potentials, whereas the nonpair atomic
interactions are not taken into account within this approximation at all.

As shown in section 8 in [2], the generalized spherical model and ring approximations
can be readily applied in combination with such widely used approaches for calculation of
interatomic potentials in alloys as the generalized perturbation [34–37] and Connolly–Williams
[32, 33] methods as well as the mean-field concentration functional theory [38–41].

The other important advantage of the generalized spherical model and ring approximations
is the ability to calculate the Fourier transform of the SRO parameters directly, without
neglecting the values of these parameters for coordination shells with large radius, as is done
within the Monte Carlo and cluster-variation methods. This is especially important in the
case of alloys with long-range atomic interactions and/or of alloys whose temperature is close
to the order–disorder phase transition temperature (due to the corresponding increase of the
effective radius of interatomic correlations). In the present paper, it was revealed that the
above-mentioned neglect may result in a wrong description of the SRO Fourier transform in
the vicinity of the origin of reciprocal space (see section 2). Within the generalized spherical
model and ring approximations, through the integration of the SRO Fourier transform over
the first Brillouin zone, it is possible to calculate the SRO parameter for anarbitrary given
coordination shell as well.
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